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Summary 

Certain allylic ethers, such as ally1 phenyl ether and benzyl phenyl ether 

undergo allylic carbon-oxygen hond scission.with either bis(l,S-cyclopentadie- 

ne)nickel(O) or tetrakis(triethylphosphine)nickel(O). Added donors or solvents 

accelerate these cleavages in the following order: 2.2'-bipyridyl > TPIEDA > THF P 

C6H6- 
Similarly, the aforementioned nickel(O) reagents effect the deoxygenation 

of eposides bearing electron-withdrawing substituents and yield the correspon- 

ding trans olefins. These+observations are interpreted in terms of electron- 

transfer pathways. 

Although numerous reports have appeared on the oxidative addition of 

zero-valent nickel complexes to organic halides [l-5] relatively littfe is 

knovn about such additions vith organic oxygen-containing substrates [6-91. 

Notevorthy, however, is the combined action of bis(l,5-cyclooctadiene)nickel(O) 

and carbon dioxide on certain epoxides. which is reported to give alkylene 

carbonates in good yields 191. 

As an extension of our interest in the mechanistic aspects of the oxida- 

tive addition reactions [lO,ll], we have now examined the behavior of certain 

ethers and epoxides toward nickel(O) complexes_ By varying the metal ligands 

and the reaction solvent, we have obtained evidence consistent with the operation 

of electron transfer in the cleavage of carbon-oxygen bonds by oxidative 

addition. Moreover, ore have observed a facile cleavage of ally1 ethers and 

*P&t IIf of the series: "Organic Chemistry of Subvalent Transition Metal 
Complexes~ (previous parts, J. Urganometal- Chem.. E 0975) C19. C23, 



a smooth deoxygenation of certain negatively substituted epoxides. 

Thus, ally1 phenyl ether undergoes smooth cleavage with bis(l,5-cyclo- 

octadiene)nickel(O). I or tetrakis(triethylphosphine)nickel(O), II, to yield 

80-100X of phenol, upon hydrolysis. and propylene (isolated as 1,2-dibromo- 

propane upon uptake in bromine dissolved in CC14)_ Uith 1. the rate of 

cleavage varied significantly with solvent in the order, MEDA > IHF~>C6H6 

and small amounts of 0' and P-allylphenols were detected. The use of a 

1-l mixture of I and 2.2-bipyridyl in THF or of II in benzene gave more 

rapid and complete cleavage to III, without any formation of allylphenols. 

+ LnBio Hc1., 00" 
(1) 

I: Ln = 2COD 
II: Ln = 4Et3P 

III i- 

CH3CH=CH2 

The accelerating effect of stronger donor ligands (bipyridyl or triethyl- 

phosphine) is consistent either with the nucleophilic or electron-transfer 

attack of LnNio on the ether substrate. Several other observations, however. 

favor an electron-transfer mechanism: 1) the rate of cleavage falls off 

rapidly in the sequence, PhOCH2CB=CH2 >> Ph-Cl-CH2Ph >> MeO-CH2Ph; 2) products 

of free-radical rearrangement. such as the allylphenols [12], are found in 

those cleavages with less effective donor ligands (COD); and 3) the promoting 

effect of more basic solvents (Bz) points to charge development on nickel in the - 

transition state: Thus, coordination of Ni" to the olefinic and/or aromatic 

Pi-system, followed by electron transfer from nickel to such u* orbitals. 

seems necessary for reaction2. 

Collapse of geminate radicals arising from IV uould account for the formation 

of allylphenols_ Stronger donating ligands on nickel in IV would enhance 

the metal's electron-transfer capability and prevent such homolytic side reactions; 

-... .._ ,__.__ 
*Although these observations are in excellent accord with electron-transfer, more 
study mill be required to rule out any competing nucleophilic pathway. 

The formation of &equal amounts of the o_ and raliylphenols is consintent 
with the generation of geminate ally1 and phenoxp radical pairs [121. but 5s not 
reconcilable with a competing thermal Claisen rearrangement, .uhere~ercluaivelY _th% 
pallylphenol is-produced [XI- _‘. ._: 

: : 
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this is indeed the case uith (CoD)2Ni+ bipyridyl or with (Et3P)4Ni. 

Further evidence for such electron-transfer cleavages can be adduced from 

the deoxygenative cleavages of epoxides. Although (COD)2Ni or (Ph3P)&Ni 

do not react readily with substituted styrene oxides, both (Et_?P)4NI in C6H6 

and a 1:l mixture of (COD) 
2 
Ni and 2,2'-bipyridyl in THF quantitatively form 

the corresponding styrenes in refluxing solution. Either cis- or trans-g- -- 

trimethylsilylstyrene oxide eventually yield the same composition of trans- 

and cis-F-trimethylsilylstyrenes (%95:5), although the ratio of isomers - 

from the cis-oxide at small conversion was 60:&O (t:c)t. The non-stereospecific - 

deoxygenation supports a stepvise carbon-oxygen cleavage initiated by electron 

transfer to phenyl s* orbitals* )(Scheme I). 

The requ+site of electron-withdrawing substituents (pi-systems with low H* 

orbitals) which foster coordination and electron transfer, is seen in the 

smooth dooxygenation of diethyl cis-2.3epoxysuccinate (V) to diethyl - 

fumarate and the inertness of *-1.2-epoxyoct-1-yl(trimathyl)silane (VI). 

Typical cleavage and deoxygeoation procedures are the following: 

Cleavage of ally1 Phenyl ether by bis(1.Scyclooctadiene)nickel(O). A solu- 

tion of 1.54 maw1 of <COD)2Ni in 10 ml of anhydrous THF and 1.53 mmol of 

*In a separate experiment cis-B-trimethylsilylstyrene was shown to undergo slow 
conversion to its trans is%% upon heating with a 1:l mixture of (COD)2Ni and 
2,2'-blp$ridyl in THF. 

**Wang polar elimination reactions proceed vith a marked stereoselectivity; for 
-example; t&e dao~genation of epoxides vith lithium diphenylphosphide[lb] cr tri- 
~~etbyI.silylpotassium [El leads cleanly to the olefin of inverted geometrical 
.coi~fi%uration; 
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ally1 phenyl ether was heated at reflux under an argon atmosphere for 35 h. 

Air-oxidization and hydrolysis with 6N-Xl. extraction into ethyl ether, 

-drying over anhydrous MgSO4 and solvent removal gave. by GLPC. almost a 

quantitative yield of phenol, which was identified by NMR and IR spectroscopy. 

Varying small amounts (-5%) or o- and p-allylphenols were detected in this - 

reaction and other reactions of (COD)2Ni conducted in benzene or TMEDA. 

Work-up of a similar reaction run by passing a stream of argon over the 

reaction mixture during hydrolysis and thence into a solution of bromine in 

CCL, led to the isolation of 1,2-dibromopropane (NMR and GLPC). 

In a modified experiment, a solution of 0.75 mm1 of ally1 phenyl ether, 

0.80 mm01 of (COD)2Ni. 0.80 amol of 2.2'-bipyridyl in 10 ml of anhydrous T& 

was heated under reflux for 24 h_ Work-up yielded only-phenol. ti_th uo 

trace of the allylpheno&, Under the a&Logous conditions, benzyi Phenyl'% ~. 



ether gave small 

methyl ether was 

amounts (5-10X) of phenol, toluene and bibenzyl and benzyl 

completely unreactive. 

Cleavage of cis-g-trimethylsilylstyrene oxide. A deep violet suspension of 

1.0 mmol of (COD)2Hi and 1.0 mmol of 2,2'-bipyridyl in 20 ml of anhydrous 

THF was stirred for 30 minutes and then treated with 0.95 mm01 of the 

styrene oxide. Gentle reflux for 30 h and usual work-up yield essentially 

a quantitative mixture of the f3-trimethylsilylstyrenes in a trans-cis ratio -- 

of 95:5_ 

In a similar manner, styrene oxide, trans-g-trimethylsilylstyrene oxide, 

and diethyl &-2.3-epouysuccinate underwent smooth deoxygenation to yield, 

where applicable, preponderantly the trans isomer. 
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